Key figure impact in trust-enhanced recommender systems

نویسندگان

  • Patricia Victor
  • Chris Cornelis
  • Martine De Cock
  • Ankur Teredesai
چکیده

Collaborative filtering recommender systems are typically unable to generate adequate recommendations for newcomers. Empirical evidence suggests that the incorporation of a trust network among the users of a recommender system can significantly help to alleviate this problem. Hence, users are highly encouraged to connect to other users to expand the trust network, but choosing whom to connect to is often a difficult task. Given the impact this choice has on the delivered recommendations, it is critical to guide newcomers through this early stage connection process. In this paper, we identify several classes of key figures in the trust network, namely mavens, frequent raters and connectors. Furthermore, we introduce measures to assess the influence of these users on the amount and the quality of the recommendations delivered by a trust-enhanced collaborative filtering recommender system. Experiments on a dataset from Epinions.com support the claim that generated recommendations for new users are more beneficial if they connect to an identified key figure compared to a random user.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation

Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AI Commun.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2008